Analysis of the Lung Microbiome in the “Healthy” Smoker and in COPD
نویسندگان
چکیده
Although culture-independent techniques have shown that the lungs are not sterile, little is known about the lung microbiome in chronic obstructive pulmonary disease (COPD). We used pyrosequencing of 16S amplicons to analyze the lung microbiome in two ways: first, using bronchoalveolar lavage (BAL) to sample the distal bronchi and air-spaces; and second, by examining multiple discrete tissue sites in the lungs of six subjects removed at the time of transplantation. We performed BAL on three never-smokers (NS) with normal spirometry, seven smokers with normal spirometry ("healthy smokers", HS), and four subjects with COPD (CS). Bacterial 16 s sequences were found in all subjects, without significant quantitative differences between groups. Both taxonomy-based and taxonomy-independent approaches disclosed heterogeneity in the bacterial communities between HS subjects that was similar to that seen in healthy NS and two mild COPD patients. The moderate and severe COPD patients had very limited community diversity, which was also noted in 28% of the healthy subjects. Both approaches revealed extensive membership overlap between the bacterial communities of the three study groups. No genera were common within a group but unique across groups. Our data suggests the existence of a core pulmonary bacterial microbiome that includes Pseudomonas, Streptococcus, Prevotella, Fusobacterium, Haemophilus, Veillonella, and Porphyromonas. Most strikingly, there were significant micro-anatomic differences in bacterial communities within the same lung of subjects with advanced COPD. These studies are further demonstration of the pulmonary microbiome and highlight global and micro-anatomic changes in these bacterial communities in severe COPD patients.
منابع مشابه
A Metagenomic Analysis of Lung Microbiome in Chemically Injured and Healthy Individuals
Background and Aim: The role of the lung microbiome in respiratory complications associated with chemicals such as sulfur mustard or chlorine gas has yet to be determined. The aim of this study was to compare the structure and composition of the lung microbiome in chemically injured and healthy individuals in order to understand the relation between the population of the lung microbiota and res...
متن کاملLipid Profile Status in Mustard Lung Patients and its Relation to Severity of Airflow Obstruction
Introduction: Chronic obstructive pulmonary disease (COPD) secondary to sulfur mustard gas poisoning, known as mustard lung, is a major late pulmonary complications in chemical warfare patients. Serious comorbidities like dyslipidemia are frequently encountered in COPD. The aim of this study was to measure the serum lipid profile and evaluate the relation of lipid parameters with the severity o...
متن کاملHomocystein Level and Total Antioxidant Capacity in Chronic Obstructive Pulmonary Disease
Abstract Background and Objective: Oxidant-antioxidant imbalance plays a key role in pathogenesis of chronic obstructive pulmonary disease (COPD). This study aimed to evaluate homocystiene and total antioxidant capacity in COPD patients, compared to smoker and non-smoker healthy people. Material and Methods: We measured total antioxidant capacity with Cayman Kit, uric acid with Pars Azm...
متن کاملA Review of The Role of The Microbiome on Immune Responses and Its Association With Cystic Fibrosis
In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in ...
متن کاملThe Relationship between Diaphragmatic Movements in Sonographic Assessment and Disease Severity in Patients with Stable Chronic Obstructive Pulmonary Disease (COPD)
Introduction: Pulmonary hyperinflation in patients with chronic obstructive pulmonary disease (COPD) can increase the breathing rate and reduce diaphragmatic movements by pushing the diaphragms downward and limiting their movements; this, in fact, can affect the breathing process. The purpose of this study was to compare diaphragmatic movements in COPD patients and healthy ones and to evaluate ...
متن کامل